-
Presentations at SCUM and AIChE
In a very busy week, I had the opportunity to present at both the Southern California Users of Magnets (SCUM) meeting, and the American Institute for Chemical Engineers (AIChE) annual meeting. At SCUM 2024, I presented some of the new work from our group using spatially-resolved NMR methods for direct measurements of thermodynamic phenomena, namely partitioning. I demonstrated this capability through measurements of the octanol-water partitioning coefficients of different solutes, in addition to using NMR profilometry to visualise intensity maps of water moving across membranes. At AIChE, I was proposing my research vision as a faculty candidate. AIChE was an excellent opportunity to meet and network with my peers across a range of disciplines, I always cherish attending talks outside of my comfort zone! For anyone I met this week, please stay in touch. I'm always happy to discuss research, especially ways to incorporate NMR spectroscopy into your work!
-
Harrison's Electrochimica Acta Paper Published
A study borne from my PhD work investigates the effects of mass transport and its interplay with electrochemical kinetics for aluminium-organic batteries. The study purports that there are two competing mechanisms in aluminum-quinone batteries, one that exists under high flux of intercalants, and the other under low flux. The mechanisms are dubbed concurrent and sequential, with these names relating to the ordering of the two-step electronic reduction and corresponding charge compensation. The concurrent mechanism occurs when the electrochemical Damköhler number is small (e.g., under high flux or low rates), and is ordered as electronic reduction-complexation-electronic reduction-complexation; the sequential mechanism by comparison occurs under conditions where the Damköhler number is large, and is ordered electronic reduction-electronic reduction-complexation-complexation. The key difference is that the uncompensated semiquinone form (after the first electronic reduction) is reduced at lower discharge potentials than the ionically compensated semiquinone. These mechanisms can be considered like putting on socks and shoes, you can go sock-shoe-sock-shoe (concurrent, small Dael), or sock-sock-shoe-shoe (sequential, large Dael). This study has consequences to any multielectronic organic electrodes, and tests multiple methods to affect Dael, all to the same conclusion.
-
ACS Applied Energy Materials Paper Published
An investigation of eutectic electrolyte mixtures for low-temperature aluminium batteries led by Jonah Wang was published today. This work uses a combination of NMR spectroscopy and electrochemical methods to understand the electrolyte speciation and monitor the cycling performance, both for electrodeposition, and also in aluminium-graphite cells. We show operation down to -40 ℃ in the ternary AlCl3-urea-[EMIm]Cl mixture at a mole ratio of 1.3-0.25-0.75. In addition to supressing the freezing point, the addition of urea to the binary mixture of AlCl3-[EMIm]Cl improves the cost effectiveness of such electrolytes.
-
ACS Materials Letters Paper Published
We just published a fundamental investigation of selenium structure at different length scales and how it affects the electrochemical reactions achieved in aluminium-selenium batteries. To achieve a full 6-electron capacity of selenium electrodes in aluminium batteries, it is imperative that the Se(0) to Se(–II) is attainable as well as the Se(0) to Se(IV) reactions. This paper documents the viability of the selenium to aluminium selenide electrochemical reduction in glassy selenium, which is seldom observed with crystalline trigonal selenium. This paper challenges the naive assumption that aluminium batteries using sulfur and selenium cathodes would operate in the same way. While both are chalcogens, the bonding topologies of elemental selenium and sulfur are quite different in their most stable forms (trigonal Se chains vs. 8-membered S rings) and this leads to differences in their electrochemical performances.
-
ACS Macro Letters Paper Published
Our recent paper led by James Bamford demonstrates the improvements in mechanical strength after adding nickel salts to a coordinating, imidazole-containing polymer. The study demonstrates that even with addition of NiTFSI2 up to r=0.16, ionic conductivity of Li+ is not strongly affected, however, the increase in mechanical stiffness is notable as a result of dynamic crosslinking of imidazole functionalities with Ni2+. This demonstrates that ion transport and bulk mechanics can be decoupled by the addition of multivalent metal cations to polymers with chelating ligands.
-
Advanced Energy Materials Paper Published
Recently a collaborative work with Oi-Man Leung at the Unversity of Southampton was published in Advanced Energy Materials. This study represents a culmination of efforts on both the electrochemistry and applications of this new electrolyte, and also the mechanistic analyses to elucidate the molecular-scale processes within. Here, we demonstrate a huge 0.3 V improvement in the oxidative stability vs. the standard chloroaluminate ionic liquid electrolyte. This increase is coupled with the inherent mechanical improvements of a polymer electrolyte, without any major sacrifice of the electrolyte conductivity. NMR spectroscopy reveals aluminium chloride crosslinks between poly(ethylene oxide) (PEO) chains and some curious behvaiour of silica particles in this system...
-
PhD Defense
Today I sucessfully defended my PhD thesis "Molecular Elucidation of Reaction Mechanisms in Aluminum and Lithium Metal Batteries by Solid-State NMR Spectroscopy and Electrochemical Methods". My PhD journey has been a greatly enjoyable 5 years and I have far too many people to thank for getting me to this point. However, I must acknowledge my committee members, Prof. Alex Couzis, Prof. Ruth Stark, Prof. George John, Prof. Elizabeth Biddinger, and my advisor Prof. Robert Messinger for their great support today. Special thanks to Rob for all the hard work we put in together!
-
Journal of Physical Chemistry Letters Paper Published
The latest work from our group "Reversible Zinc Electrodeposition at −60 ℃ Using a Deep Eutectic Electrolyte for Low-Temperature Zinc Metal Batteries" was published today. In this work we demonstrate an electrolyte with a deep-eutectic point to enable reversible zinc electrodeposition down to temperatures of -60 ℃. We make electrolytes in different ratios of [EMIm]TFSI with gamma-butyrolactone (GBL) which are probed electrochemically to determine their macroscopic properties, and further analysed at the molecular level via NMR spectroscopy and molecular dynamics (MD) simulations to explain the differences in performance from an atomistic approach.
-
Journal of Magnetic Resonance Paper Published
Our new study of aluminium-organic batteries, entitled "Revealing Impacts of Electrolyte Speciation on Ionic Charge Storage in Aluminum-Quinone Batteries by NMR Spectroscopy", is now out in the Journal of Magnetic Resonance. This is a detailed analysis of the ionic charge storage mechanisms in aluminium-quinone batteries where we begin by detailing the speciation of three different Lewis acidic ionic liquid or ionic liquid analogue electrolytes by liquid-state NMR, we then use solid-state NMR to determine the nature of the complexed ions upon electrochemical discharge in each electrolyte. We further use DFT calculations to both determine the most favorable electroactive cation generation pathways and to link the experimentally derived NMR quadrupolar parameters to a physical basis of ion interaction with different quinone structures. Finally, we also validate our hypothesised mechanisms with targeted experiments, proving the function of various ionic species.
-
BES 2022
The 4th battery and energy storage conference, taking place this year in CUNY's very own Advanced Science and Research Center building, was a fast-paced and highly engaging few days. Great talks from many people with a variety of topics - from space applications, to cutting edge recycling techniques.